Name: \qquad

Multiplicative Comparisons

Model of Excellence:

There were twenty-one adults in line at a movie theater. That is three times the number of children in line. How many children were in line?
a. Were there more adults in line, or children? Adults
b. How many times more? 3
c. What is the equation representing the problem? $\mathrm{C} \times 3=\mathrm{A}$

1. A pet store sold two cats. They sold six times as many dogs as they sold cats. How many dogs did they sell?
a. Which did the store sell more of, cats or dogs? \qquad
b. How many times more? \qquad
c. What is the equation representing the problem? \qquad
2. Oliver was counting his spare change. He had ten dimes and two quarters. How many times as many dimes does Oliver have than quarters?
a. Which does Oliver have more of, dimes or quarters? \qquad
b. How many times more? \qquad
c. What is the equation representing the problem? \qquad
3. It takes Cody six oranges to make a small glass of orange juice. He uses eight times as many for a large glass. How many oranges does he use for a large glass?
a) Which glass needs more oranges, the small or large? \qquad
b) How many times more? \qquad
c) What is the equation representing the problem? \qquad
4. Wendy was playing basketball. She made seven times as many shots as she missed. If she made fourteen shots, how many shots did she miss?
a. Which did Wendy do more of, make or miss the basketball shot?
b. How many times more? \qquad
c. What is the equation representing the problem? \qquad
5. At the state fair for every ticket Frank spent on games he spent six on rides. If he spent forty-eight tickets on rides, how many did he spend on games?
a. Which did Frank spend more money on, games or rides? \qquad
b. How many times more? \qquad
c. What is the equation representing the problem? \qquad
